Алгебра, 7 класс. Числовые функции

Как графически решить уравнение?

Иногда уравнения решают графическим способом. Для этого надо преобразовать уравнение так (если оно уже не представлено в преобразованном виде), чтобы слева и справа от знака равенства стояли выражения, для которых легко можно нарисовать графики функций. Например, дано такое уравнение:
x² – 2x – 1 = 0

Если мы еще не изучали решение квадратных уравнений алгебраическим способом, то можем попробовать сделать это либо разложением на множители, либо графически. Чтобы решить подобное уравнение графически, представим его в таком виде:
x² = 2x + 1

Свойства параболы

Графиком функции y = x2 и ряда других является парабола. Для функции y = x2 выглядит она так:

Парабола

Найти точку пересечения графиков линейных функций

Если даны две линейные функции вида y = kx + m, то их графики (прямые) могут вообще не пересекаться, если параллельны друг другу. Во всех остальных случаях они будут пересекаться в одной точке.

Преобразовать линейное уравнение к линейной функции

Построить график линейного уравнения ax + by + c = 0 можно проще, если предварительно выразить y через x. В общем виде это выглядит так:
by = –ax – c
y = –ax/b – c/b или y = –a/b × x – c/b.

Далее вводят обозначения для –a/b и –с/b:
–a/b = k
–с/b = m

В результате получают уравнение:
y = kx + m