Как графически решить уравнение?

Иногда уравнения решают графическим способом. Для этого надо преобразовать уравнение так (если оно уже не представлено в преобразованном виде), чтобы слева и справа от знака равенства стояли выражения, для которых легко можно нарисовать графики функций. Например, дано такое уравнение:
x² – 2x – 1 = 0

Если мы еще не изучали решение квадратных уравнений алгебраическим способом, то можем попробовать сделать это либо разложением на множители, либо графически. Чтобы решить подобное уравнение графически, представим его в таком виде:
x² = 2x + 1

Из такого представления уравнения следует, что требуется найти такие значения x, при которых левая часть будет равна правой.

Как известно, графиком функции y = x² является парабола, а y = 2x + 1 — прямая. Координата x точек координатной плоскости, лежащих как на первом графике, так и на втором (то есть точек пересечения графиков) как раз и являются теми значениями x, при которых левая часть уравнения будет равна правой. Другими словами, координаты x точек пересечения графиков являются корнями уравнения.

Графики могут пересекаться в нескольких точках, в одной точке, вообще не пересекаться. Отсюда следует, что уравнение может иметь несколько корней, или один корень, или вообще их не иметь.

Рассмотрим пример попроще:
x² – 2x = 0 или x² = 2x

Нарисуем графики функций y = x² и y = 2x:

Пересечение параболы и прямой

Как видно из чертежа, парабола и прямая пересекаются в точках (0; 0) и (2; 4). Координаты x этих точек соответственно равны 0 и 2. Значит, уравнение x² – 2x = 0 имеет два корня — x1 = 0, x2 = 2.

Проверим это, решив уравнение вынесением общего множителя за скобки:
x² – 2x = 0
x(x – 2) = 0

Ноль в правой части может получиться либо при x равном 0, либо 2.

Причина, по которой мы не стали графически решать уравнение x² – 2x – 1 = 0 в том, что в большинстве уравнений корнями являются вещественные (дробные) числа, а точно определить на графике значение x сложно. Поэтому для большинства уравнений графический способ решения не является лучшим. Однако знание этого способа дает более глубокое понимание связи между уравнениями и функциями.