Неравенства

Тема: Уравнения и неравенства
8 класс

Квадратные неравенства — это неравенства, содержащие квадратный трехчлен ax2 + bx + c, где a ≠ 0.

Решить квадратное неравенство (как и любое другое) — это значит, найти область значений переменной (x), при которых неравенство становится верным.

Квадратное неравенство можно решить графическим методом (методом изображения параболы) и методом интервалов. Хотя метод интервалов также можно считать графическим, если эти интервалы изображаются на прямой.

Тема: Уравнения и неравенства
8 класс

При решении числовых неравенств пользуются несколькими правилами, основанными на свойствах неравенств. Решить числовое неравенство с переменной — это значит, найти такие значения переменной (область значений), при которых данное неравенство становится верным. Обычно значения переменных выражаются пределами (множествами чисел, лучами, отрезками), которым они принадлежат.

Правила решения неравенств позволяют привести неравенство к виду, когда область значений становится очевидна. Например, x < b, где знак неравенства и число b могут быть любыми.

Перечислим эти правила.

Член неравенства можно перенести из одной его части в другую. При этом следует поменять знак этого члена на противоположный. Например:

3x + 4 < 10
3x < 10 – 4

Тема: Уравнения и неравенства
8 класс

Линейные неравенства — это такие неравенства с переменной, которые имеют вид или преобразуются к примерному виду ax < b (или ax + b < 0), где знак неравенства может быть любым, x — переменная, а a и b — действительные числа, при этом a ≠ 0. Основным признаком линейных неравенств является то, что переменная в них представлена в первой степени (а не в квадрате, например).

Решить линейное неравенство — это значит найти такие значения переменной, при которых данное неравенство является верным. Обычно допустимыми значениями переменных линейных неравенств являются лучи (ограниченные множества решений).

Тема: Уравнения и неравенства
8 класс

Неравенство Коши было доказано французским математиком Огюстом Коши в первой половине XIX века. В сокращенном виде неравенство Коши утверждает, что среднее арифметическое неотрицательных чисел не меньше их среднего геометрического. В полном варианте в неравенство Коши также включаются среднее гармоническое и среднее квадратическое.

Среднее арифметическое — это сумма заданного количества чисел, деленная на количество чисел:

(x1 + x2 + x3 + … + xn) / n

Среднее геометрическое находится как извлечение корня в степени количества чисел, где подкоренное выражение — это произведение этих чисел:

Тема: Уравнения и неравенства
8 класс

Для оценки чисел в неравенствах используются различные свойства числовых неравенств. Обычно в таких заданиях даются одно или несколько исходных неравенств, в которых присутствуют переменные. Требуется оценить результат арифметических действий над этими переменными (т. е. получаемые новые числа).

Например, даны два таких исходных двойных неравенства:

  • –1 < p < 10;
  • 2,5 < q < 3,2.

Требуется оценить числа, которые получаются в результате следующих действий над переменными:

  • 0,1 × p,
  • 1/q,
  • p + q,
  • q – p,
  • p3.

При оценке числа 0,1p воспользуемся следующими свойством числовых неравенств:

Подписаться на Неравенства