Модуль

Тема: Действительные числа
8 класс

Как известно, модуль числа — это его абсолютное значение, без учета знака. Модуль всегда неотрицателен. Это значит, что он может быть равен либо положительному числу, либо нулю.

Таким образом, если дается положительное число или ноль, то их модуль будет равен им самим. А вот для отрицательного числа, его модуль будет иметь противоположное значение, т. е. являться противоположным числом. Так

|–3| = 3,
|–1,345| = 1,345.

Если представить числовую прямую (координатную прямую), то можно сказать, что на том расстоянии, на котором от нуля находится отрицательное число в одну сторону, на том же расстоянии от нуля находится его модуль, но в другую сторону.

Тема: Действительные числа
8 класс

Существуют следующие свойства модуля действительных чисел:

1) |a + b| ≤ |a| + |b|;

2) |ab| = |a| × |b|;

3) , a ≠ 0;

4) |a – b| ≥ |a| – |b|.

Проведем доказательства, рассматривая различные случаи значений a и b.

Доказательство 1) |a + b| ≤ |a| + |b|:

Если a и b – положительные числа, то их модули совпадают с их значениями: |a| = a, |b| = b. Из этого следует, что |a + b| = |a| + |b|.

Подписаться на Модуль