Какие признаки равенства прямоугольных треугольников?

Известны три признака равенства любых треугольников:

  1. по двум сторонам и углу между ними;
  2. по двум угла и стороне между ними;
  3. по трем сторонам.

У двух прямоугольных треугольников всегда одна пара углов равна друг другу — это прямые углы. Поэтому признаки равенства треугольников для прямоугольных треугольников упрощаются в том смысле, что для утверждения, что треугольники равны, надо знать о равенстве меньшего количества элементов.

Первый признак равенства треугольников для прямоугольных треугольников сокращается до равенства двух катетов: если катеты одного прямоугольного треугольника равны катетам другого, то эти треугольники равны. Действительно, ведь между катетами лежит прямой угол, который у обоих треугольников равен 90°.

На основе второго признака равенства треугольников утверждается, что если в у одного прямоугольного треугольника катет и прилежащий к нему непрямой угол равны катету и прилежащему к нему непрямому углу другого прямоугольного треугольника, то такие треугольники равны. Действительно, ведь катеты получаются лежащим между равными углами. С одной стороны равны острые углы, а с другой — прямые.

Поскольку острые углы в прямоугольных треугольниках в сумме всегда равны 90°, то если у двух прямоугольных треугольников равен один острый угол, то значит будет равен и другой. Например a — один угол, то 90° – a другой угол у обоих треугольников.

Поэтому прямоугольные треугольники равны, если гипотенуза и острый угол одного равен гипотенузе и острому углу другого, так как по-сути нам известны все острые углы прямоугольных треугольников. И получается равенство по двум углам и стороне между ними.

Также в следствие того, что если известен один острый угол прямоугольного треугольника, то известен и другой, вытекает равенство прямоугольных треугольников по катету и противолежащему острому углу. В этом случае «работает» второй признак равенства треугольников: по стороне и прилежащей к ней двум углам (один прямой, другой вычисленный).

Кроме перечисленных признаков равенства прямоугольных треугольников существует еще один, которые напрямую не вытекает из трех признаков равенства треугольников: если у прямоугольных треугольников равны по одному катету и гипотенузы, то такие треугольники равны.

Этот признак равенства можно доказать.

Приложим прямоугольные треугольники друг к другу равными катетами так, чтобы прямые углы оказались по разные стороны от полученной общей стороны, а гипотенузы по разные стороны от нее. Эти гипотенузы равны по условию, а значит мы получили равнобедренный треугольник. Значит углы при вершинах, которые отстоят от общей стороны (которой они были приложены друг к другу), равны. Это в свою очередь значит, что у треугольников равны гипотенуза, катет и противоположный ему угол. Но существуют признаки равенства по гипотенузе и острому углу, по катету и противолежащему углу. Значит данные прямоугольные треугольники, у которых равны катет и гипотенуза, равны.