Импульс после столкновения
Импульс — это физическая величина, которая в определенных условиях остается постоянной для системы взаимодействующих тел. Модуль импульса равен произведению массы на скорость (p = mv
). Закон сохранения импульса формулируется так:
В замкнутой системе тел векторная сумма импульсов тел остается постоянной, т. е. не изменяется. Под замкнутой понимают систему, где тела взаимодействуют только друг с другом. Например, если трением и силой тяжести можно пренебречь. Трение может быть мало, а сила тяжести уравновешиваться силой нормальной реакции опоры.
Допустим, одно движущееся тело сталкивается с другим таким же по массе телом, но неподвижным. Что произойдет? Во-первых, столкновение может быть упругим и неупругим. При неупругом столкновении тела сцепляются в одно целое. Рассмотрим именно такое столкновение.
Поскольку массы тел одинаковы, то обозначим их массы одинаковой буквой без индекса: m. Импульс первого тела до столкновения равен mv1
, а второго равен mv2
. Но так как второе тело не движется, то v2 = 0, следовательно, импульс второго тела равен 0.
После неупругого столкновения система из двух тел продолжит двигаться в ту сторону, куда двигалось первое тело (вектор импульса совпадает с вектором скорости), а вот скорость станет в 2 раза меньшей. То есть масса увеличится в 2 раза, а скорость уменьшится в 2 раза. Таким образом, произведение массы на скорость останется прежним. Разница только в том, что до столкновения скорость была в 2 раза больше, но масса была равна m. После столкновения масса стала 2m, а скорость в 2 раза меньше.
Представим, что неупруго сталкиваются два тела, движущихся навстречу друг другу. Векторы их скоростей (также как и импульсов) направлены в противоположные стороны. Значит, модули импульсов надо вычитать. После столкновения система из двух тел продолжит двигаться в ту сторону, куда двигалось тело, обладающее большим импульсом до столкновения.
Например, если одно тело было массой 2 кг и двигалось со скоростью 3 м/с, а другое — массой 1 кг и скоростью 4 м/с, то импульс первого равен 6 кг · м/с, а импульс второго равен 4 кг · м/с. Значит, вектор скорости после столкновения будет сонаправлен с вектором скорости первого тела. А вот значение скорости можно вычислить так. Суммарный импульс до столкновения был равен 2 кг · м/с, так как векторы разнонаправлены, и мы должны вычитать значения. Таким же он должен остаться и после столкновения. Но после столкновения масса тела увеличилась до 3 кг (1 кг + 2 кг), значит из формулы p = mv
следует, что v = p/m
= 2/3 = 1,6(6) (м/с). Мы видим, что в результате столкновения скорость уменьшилась, что согласуется с нашим житейским опытом.
Если два тела движутся в одну сторону и одно из них нагоняет второе, толкает его, сцепляясь с ним, то как изменится скорость этой системы тел после столкновения? Допустим, тело массой 1 кг двигалось со скоростью 2 м/с. Его догнало и сцепилось с ним тело массой 0,5 кг, двигающееся со скоростью 3 м/с.
Так как тела двигаются в одну сторону, то импульс системы этих двух тел равен сумме импульсов каждого тела: 1 · 2 = 2 (кг · м/с) и 0,5 · 3 = 1,5 (кг · м/с). Суммарный импульс равен 3,5 кг · м/с. Он должен сохраниться и после столкновения, но масса тела здесь будет уже 1,5 кг (1 кг + 0,5 кг). Тогда скорость будет равна 3,5/1,5 = 2,3(3) (м/с). Эта скорость больше, чем скорость первого тела, и меньше, чем скорость второго. Это и понятно, первое тело подтолкнули, а второе, можно сказать, столкнулось с препятствием.
Теперь представим, что два тела изначально сцеплены. Некая равная сила расталкивает их в разные стороны. Каковы будут скорости тел? Поскольку для каждого тела применена равная сила, то модуль импульса одного должен быть равен модулю импульса другого. Однако векторы разнонаправлены, поэтому их сумма будет равна нулю. Это и правильно, т. к. до разъезжания тел их импульс был равен нулю, ведь тела покоились. Так как импульс равен произведению массы на скорость, то в данном случае понятно, что чем массивнее тело, тем меньше будет его скорость. Чем легче тело, тем больше будет его скорость.