Разделы

Алгебраические выражения

Науколандия

Почему число в степени 0 равно 1?

Существует правило, что любое число, кроме нуля, возведенное в нулевую степень, будет равно единице:
20 = 1;      1.50 = 1;      100000 = 1

Однако почему это так?

Когда число возводится в степень с натуральным показателем, то имеется в виду, что оно умножается само на себя столько раз, каков показатель степени:

43 = 4 × 4 × 4;      26 = 2 × 2 × 2 × 2 × 2 × 2

Когда же показатель степени равен 1, то при возведении имеется всего лишь один множитель (если тут вообще можно говорить о множителях), и поэтому результат возведения равен основанию степени:

181 = 18;      (–3.4)1 = –3.4

Но как в таком случае быть с нулевым показателем? Что на что умножается?

Попробуем пойти иным путем. Известно, что если у двух степеней одинаковые основания, но разные показатели, то основание можно оставить тем же самым, а показатели либо сложить друг с другом (если степени перемножаются), либо вычесть показатель делителя из показателя делимого (если степени делятся):

32 × 31 = 32+1 = 33 = 3 × 3 × 3 = 27
45 ÷ 43 = 45–3 = 42 = 4 × 4 = 16

А теперь рассмотрим такой пример:

82 ÷ 82 = 82–2 = 80 = ?

Что если мы не будем пользоваться свойством степеней с одинаковым основанием и произведем вычисления по порядку их следования:

82 ÷ 82 = 64 ÷ 64 = 1

Вот мы и получили заветную единицу. Таким образом нулевой показатель степени как бы говорит о том, что число не умножается само на себя, а делится само на себя.

И отсюда становится понятно, почему выражение 00 не имеет смысла. Ведь нельзя делить на 0.

Можно рассуждать по-другому. Если имеется, например, умножение степеней 52 × 50 = 52+0 = 52, то отсюда следует, что 52 было умножено на 1. Следовательно, 50 = 1.