Виды неполных квадратных уравнений
Квадратное уравнение имеет вид ax2 + bx + c = 0.
Неполными квадратными уравнениями являются уравнения трех видов:
- ax2 + bx = 0, когда коэффициент c = 0.
- ax2 + c = 0, когда коэффициент b = 0.
- ax2 = 0, когда и b и с равны 0.
Коэффициент же a по определению квадратного уравнения не может быть равен нулю.
Неполные квадратные уравнения решаются проще, чем полные квадратные. Способы решения различаются в зависимости от вида неполного квадратного уравнения.
Проще всего решаются уравнения вида ax2 = 0. Если a по определению квадратного уравнения не может быть равно нулю, то очевидно, что нулю может быть равен только x2, а значит, и сам x. У уравнений такого вида всегда есть один корень, он равен 0. Например:
–3x2 = 0
x2 = 0/–3
x2 = 0
x = √0
x = 0
Уравнения вида ax2 + c = 0 преобразуются к виду ax2 = –c и решаются аналогично предыдущему. Однако корней здесь либо два, либо не одного.
ax2 + c = 0
ax2 = –c
x2 = –c/a
x = √(–c/a)
Здесь если подкоренное выражение отрицательно, то корней у уравнения нет. Если положительно, то корней будет два: √(–c/a) и –√(–c/a). Пример решения подобного уравнения:
4x2 – 16 = 0
4x2 = 16
x2 = 16 / 4
x2 = 4
x = √4
x1 = 2; x2 = –2
Неполные квадратные уравнения вида ax2 + bx = 0 решается вынесением общего множителя за скобку. В данном случае им является x. Получается уравнение x(ax + b) = 0. Это уравнение имеет два корня: либо x = 0, либо ax + b = 0. Решая второе уравнение получаем x = –b/a. Таким образом, уравнения вида ax2 + bx = 0 имеют два корня: x1 = 0, x2 = –b/a. Пример решения такого уравнения:
3x2 – 10x = 0
x(3x – 10) = 0
x1 = 0; x2 = 10/3 = 3,(33)