Как построить прямоугольный треугольник по гипотенузе и катету?
Даны два неравных друг другу отрезка. Построить из них прямоугольный треугольник так, чтобы больший был в нем гипотенузой, а меньший — одним из катетов.
Как известно, существует признак равенства прямоугольных треугольников по гипотенузе и катету. Это значит, что по гипотенузе и катету можно построить только один прямоугольный треугольник, то есть они однозначно определяют треугольник.
По катету и гипотенузе прямоугольный треугольник можно построить как минимум двумя способами.
Способ 1:
- Начертить прямую и отложить на ней меньший отрезок (обозначим его как AB).
- Для построения перпендикулярной прямой отложить такой же отрезок по другую сторону одной из точек концов отрезка, отложенного в п. 1. Пусть это будет отрезок AC.
- Замерить циркулем длину отрезка BC и начертить две окружности (или их части). Одну с центром в точке B, другую — в C.
- Через точки пересечения окружностей провести прямую. Данная прямая будет срединным перпендикуляром к отрезку BC. Серединой данного отрезка является точка A. Значит, прямая пройдет через нее и будет перпендикулярна отрезку AB, равному катету будущего треугольника. Следует заметить, что прямую можно было бы проводить не через точки пересечения окружностей, а через одну точку их пересечения и точку A.
- Измерить больший из данных по условию задачи отрезков (будущую гипотенузу).
- Начертить окружность (или ее часть) с центром в точке B и радиусом, полученным в п. 5. Точку ее пересечения с перпендикулярной прямой, полученной в п. 4, обозначим как D.
- Построить отрезок BD.
Треугольник ABD искомый. У него сторона AB равна меньшему отрезку (катету), сторона BD равна большему отрезку (гипотенузе), угол BAD — прямой.
Способ 2:
- Начертить прямую и отложить на ней больший из данных отрезков (обозначим его как KL).
- Найди его середину, построив к нему срединный перпендикуляр. Для этого измеряется длина отрезка KL и рисуются две окружности (или их части) с центрами в точках K и L. Через точки пересечения окружностей рисуется прямая. Точка пересечения отрезка KL и перпендикулярной прямой есть середина KL. Обозначим середину отрезка KL точкой O.
- Измерить отрезок KO (или LO).
- Начертить окружность с центром в точке O и радиусом, равным KO.
- Измерить меньший из данных по условию задачи отрезков (катет).
- Начертить окружность из точки K (или L) радиусом, полученным в п. 5.
- Обозначить точку пересечения окружностей, полученных в п. 4 и п. 6. Пусть это будет точка M.
- Построить отрезки KM и LM.
Угол KML прямой, так как существует теорема, что любой вписанный в окружность угол, опирающийся на полуокружность, прямой. ∠KML опирается на полуокружность KL.
Таким образом треугольник KLM прямоугольный. Кроме того, у него сторона KL равна большему из данных по условию задачи отрезков (гипотенузе), а сторона KM — меньшему (катету). Значит, ∆KLM искомый.