Погрешность приближения
Имея дело в вычислениях с бесконечными десятичными дробями, приходится для удобства выполнять приближение этих чисел, т. е. округлять их. Приблизительные числа получаются также при различных измерениях.
Бывает полезно узнать, как сильно приближенное значение числа отличается от его точного значения. Понятно, что чем это различие меньше, тем лучше, тем точнее выполнено измерение или вычисление.
Для определения точности измерений (вычислений) вводят такое понятие как погрешность приближения. По-другому его называют абсолютной погрешностью. Погрешность приближения представляет собой взятую по модулю разность между точным значением числа и его приближенным значением.
Если a — это точное значение числа, а b — его приближенное значение, то погрешность приближения определяется по формуле |a – b|.
Допустим, что в результате измерений было получено число 1,5. Однако в результате вычисления по формуле точное значение этого числа равно 1,552. В таком случае погрешность приближения будет равна |1,552 – 1,5| = 0,052.
В случае с бесконечными дробями погрешность приближения определяется по той же формуле. На месте точного числа записывается сама бесконечная дробь. Например, |π – 3,14| = |3,14159... – 3,14| = 0,00159... . Здесь получается, что погрешность приближения выражена иррациональным числом.
Как известно, приближение может выполняться как по недостатку, так и по избытку. То же число π при приближении по недостатку с точностью до 0,01 равно 3,14, а при приближении по избытку с точностью до 0,01 равно 3,15. Причина, по которой в вычислениях используется его приближение по недостатку, заключается в применении правил округления. Согласно этим правилам, если первая отбрасываемая цифра равна пяти или больше пяти, то выполняется приближение по избытку. Если меньше пяти, то по недостатку. Так как третьей цифрой после запятой у числа π является 1, то поэтому при приближении с точностью до 0,01 оно выполняется по недостатку.
Действительно, если вычислить погрешности приближения до 0,01 числа π по недостатку и по избытку, то получим:
|3,14159... – 3,14| = 0,00159...
|3,14159... – 3,15| = 0,0084...
Так как 0,00159...
Говоря о погрешности приближения, так же как и в случае с самим приближением (по избытку или недостатку), указывают его точность. Так в приводимом выше примере с числом π следует сказать, что оно равно числу 3,14 с точностью до 0,01. Ведь модуль разности между самим числом и его приближенным значением не превышает 0,01 (0,00159... ≤ 0,01).
Точно также π равно 3,15 с точностью до 0,01, так как 0,0084... ≤ 0,01. Однако если говорить о большей точности, например до 0,005, то мы можем сказать, что π равно 3,14 с точностью до 0,005 (так как 0,00159... ≤ 0,005). Сказать же это по отношению к приближению 3,15 мы не можем (так как 0,0084... > 0,005).